công thức tính đường trung tuyến

công thức tính đường trung tuyến

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết

A. Phương pháp giải

Áp dụng công thức tính độ dài đường trung tuyến:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Cho tam giác ABC có các cạnh BC = a, CA = b và AB = c. Gọi ma; mb; mc là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh A, B và C của tam giác. Khi đó

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

B. Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC có BC = a = 10 cm, CA = b = 8 cm, AB = c = 7 cm. Tính độ dài các đường trung tuyến của tam giác ABC.

Hướng dẫn giải:

Gọi độ dài trung tuyến từ các đỉnh A, B, C của tam giác ABC lần lượt là ma; mb; mc.

Áp dụng công thức trung tuyến ta có:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Vì độ dài các đường trung tuyến (là độ dài đoạn thẳng) nên nó luôn dương, do đó:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Ví dụ 2: Cho tam giác ABC, có BC = a, CA = b và AB = c. Chứng minh rằng nếu b2 + c2 = 5a2 thì hai trung tuyến kẻ từ B và C của tam giác vuông góc với nhau.

Hướng dẫn giải:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Gọi D và E lần lượt là trung điểm của AB và AC, G là trọng tâm tam giác ABC.

Đặt BE = mb, CD = mc

Áp dụng công thức trung tuyến trong tam giác ABC ta có:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Vậy b2 + c2 = 5a2 thì hai trung tuyến kẻ từ B và C của tam giác vuông góc với nhau. (đpcm)

Ví dụ 3: Cho tam giác ABC có AB = 3, BC = 5 và độ dài đường trung tuyến Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10. Độ dài AC là:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Hướng dẫn giải:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

BM là trung tuyến của tam giác ABC, áp dụng công thức trung tuyến ta có:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Đáp án B

Ví dụ 4: Tam giác ABC có BC = 6, AC = Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10, AB = 2. M là một điểm trên cạnh BC sao cho BM = 3. Giá trị của AM là?

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Hướng dẫn giải:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Mà M thuộc BC.

Do đó M là trung điểm của BC => AM là trung tuyến của tam giác ABC, áp dụng công thức trung tuyến ta có.

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Đáp án C

Ví dụ 5: Gọi S = ma2 + mb2 + mc2 là tổng bình phương độ dài ba đường trung tuyến của tam giác ABC. Khẳng định nào sau đây là đúng? (cho BC = a, CA = b, AB = c)

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Hướng dẫn giải:

Áp dụng công thức trung tuyến trong tam giác ABC ta có:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Đáp án A

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:

  • Cách chứng minh Hai vecto vuông góc cực hay, chi tiết
  • Tìm m để góc giữa hai vecto bằng một số cho trước cực hay (45 độ, góc nhọn, góc tù)
  • Cách giải bài tập về Định lí Cô-sin trong tam giác cực hay, chi tiết
  • Cách giải bài tập về Định lí Sin trong tam giác cực hay, chi tiết
  • Công thức, cách tính Diện tích tam giác cực hay, chi tiết

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 10 tại phebinhvanhoc.com.vn

  • Hơn 7500 câu trắc nghiệm Toán 10 có đáp án
  • Hơn 5000 câu trắc nghiệm Hóa 10 có đáp án chi tiết
  • Gần 4000 câu trắc nghiệm Vật lý 10 có đáp án

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *